Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YAJ_1)}(2) \setminus P_{f(4PLJ_1)}(2)|=159\),
\(|P_{f(4PLJ_1)}(2) \setminus P_{f(1YAJ_1)}(2)|=17\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011110010101110110101110111111111110111111010110110110110010001110000101101100110000001110100001010100110100000111111101111111110000111111000111101000111111100100000101101001111011000110111011010111001110010111101110011001100011110011100101011100111011000000111100100000001100010101101010101000011110110111110010010100010011011110000111111111001100101000011011100011101100111010000111000010000111011101111110111100000111100100100010100010100111001001101111111001100001010011101110110010101011101100000010101110001100100001111001110
Pair
\(Z_2\)
Length of longest common subsequence
1YAJ_1,4PLJ_1
176
3
1YAJ_1,1CWL_1
194
3
4PLJ_1,1CWL_1
156
3
Newick tree
[
1YAJ_1:96.99,
[
4PLJ_1:78,1CWL_1:78
]:18.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{680
}{\log_{20}
680}-\frac{148}{\log_{20}148})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YAJ_1
4PLJ_1
190
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]