Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2QTS_1)}(2) \setminus P_{f(6NLW_1)}(2)|=143\),
\(|P_{f(6NLW_1)}(2) \setminus P_{f(2QTS_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001011001100001010011111011101111111000010001101010010011100101111010010010100100001001101111100000110000100001011000101001010110110100011001001110011010000100101110001000010110010101101011010110111010000011111000000101110101000001111001111111110011000000110111111000100100010000010100100000011000000110111011000100000010111011100000001001100100010010110110010100110000000001100111101110110000100001001111110111011111110110110110010011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{684
}{\log_{20}
684}-\frac{246}{\log_{20}246})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2QTS_1
6NLW_1
155
121
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]