Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7UGG_1)}(2) \setminus P_{f(2ERC_1)}(2)|=171\),
\(|P_{f(2ERC_1)}(2) \setminus P_{f(7UGG_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110000111111000011110111100001101010000101110101101010100001111001100010001010000100100100010001001001010110000000000100011111001010010011001001000001101101110010100010001101110101000011011111100001100110100000100100110111000010101111111101010101111010000011011001111110000101101110000001000000100110111011001000001100100111100101010010000110110111011010110011000100011001000100110111000100100100000001101110000100000110101100110001001100111101010110010101100001000001101111000101101110111111100101001111111010010011001110111110111111011101110000110111111111101100001100111001110011100110111101111111111110110000000000000101001110110101111010100000011111111100111011111011111110010010000001101001001101001110110001011010011000101010100101001000101100011110001010010000000000010110010011000111101011110010100
Pair
\(Z_2\)
Length of longest common subsequence
7UGG_1,2ERC_1
191
4
7UGG_1,1ENN_1
305
2
2ERC_1,1ENN_1
164
2
Newick tree
[
7UGG_1:13.07,
[
2ERC_1:82,1ENN_1:82
]:57.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1052
}{\log_{20}
1052}-\frac{244}{\log_{20}244})=217.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7UGG_1
2ERC_1
278
176.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]