Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2QRL_1)}(2) \setminus P_{f(7UJQ_1)}(2)|=104\),
\(|P_{f(7UJQ_1)}(2) \setminus P_{f(2QRL_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000000010101001111010101000110101110100100111011010100010001010000011111111101001100011111001100001111000101100000011100111011010101001011000010011111101111111111001110000000001111010100011100100000011101100101111111100101110110011110101101010000011110011010111001010011111001001001000100110101000010011110011011001011110011101011010011011100100110001110101110000111110100110000101000001
Pair
\(Z_2\)
Length of longest common subsequence
2QRL_1,7UJQ_1
156
4
2QRL_1,2AHO_1
138
4
7UJQ_1,2AHO_1
170
4
Newick tree
[
7UJQ_1:85.35,
[
2QRL_1:69,2AHO_1:69
]:16.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{662
}{\log_{20}
662}-\frac{268}{\log_{20}268})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2QRL_1
7UJQ_1
136
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]