Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4QHY_1)}(2) \setminus P_{f(6TTO_1)}(2)|=98\),
\(|P_{f(6TTO_1)}(2) \setminus P_{f(4QHY_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111010101011111010110001101101110000000100110101101000111000000101010010000010000101100101101110011110110111110111111110011101000001111111110011110001111000011000001001001011001111110110010100110110001001000100011111100101001100100101111110110111010001011111010001010001110010010110001001011111111001010100100111011011010111110101000110011110011010110100011101100001111001000010101001111100010011000111010111111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{732
}{\log_{20}
732}-\frac{317}{\log_{20}317})=113.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4QHY_1
6TTO_1
143
126.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]