Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2PNY_1)}(2) \setminus P_{f(5AHM_1)}(2)|=65\),
\(|P_{f(5AHM_1)}(2) \setminus P_{f(2PNY_1)}(2)|=89\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101010010101100001001001111100000111100000001000100111001101111000001110000000101110100000001100110100001111001100010101111100101001111010000100001110001001111000101010100000110100001101100010101010111001100110011101001011101001001
Pair
\(Z_2\)
Length of longest common subsequence
2PNY_1,5AHM_1
154
19
2PNY_1,3SAM_1
172
6
5AHM_1,3SAM_1
148
6
Newick tree
[
2PNY_1:84.01,
[
5AHM_1:74,3SAM_1:74
]:10.01
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{646
}{\log_{20}
646}-\frac{246}{\log_{20}246})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2PNY_1
5AHM_1
131
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]