Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3SFU_1)}(2) \setminus P_{f(4UIK_1)}(2)|=161\),
\(|P_{f(4UIK_1)}(2) \setminus P_{f(3SFU_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110101001111110010111100001110001001111110110110000010110100110001010001011111001101100110001000101001101001000100000010100000000101011110110010010010011001011001110001101001010100011110011011011011111001100001101101110100011111100101000101000010000001110011011101010101101110011110110110001110011101010000100110111010111010010101110000101010001100010101100011100011110010000111000001011011001111001110101001010001110011000011001110100100111111011101000000110010001100110111100001101101101010010000111100011110000000
Pair
\(Z_2\)
Length of longest common subsequence
3SFU_1,4UIK_1
198
3
3SFU_1,1ALX_1
260
2
4UIK_1,1ALX_1
144
2
Newick tree
[
3SFU_1:12.77,
[
4UIK_1:72,1ALX_1:72
]:54.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{740
}{\log_{20}
740}-\frac{223}{\log_{20}223})=144.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3SFU_1
4UIK_1
189
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]