Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2MSE_1)}(2) \setminus P_{f(2HAL_1)}(2)|=66\),
\(|P_{f(2HAL_1)}(2) \setminus P_{f(2MSE_1)}(2)|=100\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101100100100010010001111000110010000011000100010010101010100100010001010000101101010011000100100010111001000101010110001110000100011101011000111011000101000100100010111001001111110010101101100000010
Pair
\(Z_2\)
Length of longest common subsequence
2MSE_1,2HAL_1
166
4
2MSE_1,8GCJ_1
140
5
2HAL_1,8GCJ_1
140
4
Newick tree
[
2HAL_1:78.90,
[
2MSE_1:70,8GCJ_1:70
]:8.90
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{412
}{\log_{20}
412}-\frac{200}{\log_{20}200})=62.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2MSE_1
2HAL_1
81
75.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]