Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ILA_1)}(2) \setminus P_{f(2MJD_1)}(2)|=172\),
\(|P_{f(2MJD_1)}(2) \setminus P_{f(6ILA_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001100111101010100000001001011010100011101010100010100101101001000001110001110110111000101111001111111010010101101111000100111010000011011101110010001011010010000010111011101101000001000110110001000000110010000010010001011101101011011001110001101110100001001101101010100010101110011110011100101101110111010011001101101000111011110011001010011001011111100001010100110011011011100011100010001100100101000100010010111010000110010000100110100111101000010011000110010000000011100011001011110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{604
}{\log_{20}
604}-\frac{115}{\log_{20}115})=142.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ILA_1
2MJD_1
178
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]