Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2INE_1)}(2) \setminus P_{f(1SQB_1)}(2)|=73\),
\(|P_{f(1SQB_1)}(2) \setminus P_{f(2INE_1)}(2)|=106\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111001101111111010011101001101110110001001010000001111100010001100001111001100000011101100001001010010101101101101100111100010111000011001111001100111011110010010101110011100011100100010100001100000011110100111010011101001011001010111100000010111011100011111001010011001011010100001001100000101011100000000110001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{795
}{\log_{20}
795}-\frac{315}{\log_{20}315})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2INE_1
1SQB_1
167
137
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]