Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CLR_1)}(2) \setminus P_{f(3KBF_1)}(2)|=155\),
\(|P_{f(3KBF_1)}(2) \setminus P_{f(5CLR_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101101011010010011110001101110111001100110010101100011100111000111100010101111100001011100000010101100100011001010100100100000010011011101100000100110011011010000011110101001101111110100010010011110001011011101010001101100000001011011010011101010001111001001111100100110110010110101110000111101010101011100000100101001101001100100010110011111001000001101000100111010110000000110110110010010111000011101110011010000110001110010001100110010101111100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{608
}{\log_{20}
608}-\frac{157}{\log_{20}157})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CLR_1
3KBF_1
161
108
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]