Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2FYC_1)}(2) \setminus P_{f(1HTB_1)}(2)|=40\),
\(|P_{f(1HTB_1)}(2) \setminus P_{f(2FYC_1)}(2)|=146\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001000010011001010011011011011100010000111000100001110100011000001100001011000011000100011010011110110010100110000100100001
Pair
\(Z_2\)
Length of longest common subsequence
2FYC_1,1HTB_1
186
3
2FYC_1,7FVY_1
132
3
1HTB_1,7FVY_1
170
4
Newick tree
[
1HTB_1:95.55,
[
2FYC_1:66,7FVY_1:66
]:29.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{497
}{\log_{20}
497}-\frac{123}{\log_{20}123})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2FYC_1
1HTB_1
141
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]