Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1KIT_1)}(2) \setminus P_{f(8BLF_1)}(2)|=114\),
\(|P_{f(8BLF_1)}(2) \setminus P_{f(1KIT_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110001010001001100111000000101110010111111101111010100010000010100111010001011011110000101000111110100010111010100100111010110000010111111001010101010110001010100001111101000001111000101010101110110011011100101111011100011110111100000110000001110100010100010100010100101100100001110010110011001001011110111001001101010111010001000010111111001000000100000100010101101110010110100001101010001111101011011111000010100100001000110000011101001001110100000101101010101010100111000100110101101100010100010011100100100101010101011110110100000101000101101111100111011010000110010010011111010000110010100101101001011101010100110110001000110001110101101001011001001010101001000010011110010101110010001111101001101011101101101000100100001111100000010110111011000101000
Pair
\(Z_2\)
Length of longest common subsequence
1KIT_1,8BLF_1
152
4
1KIT_1,5TVF_1
239
4
8BLF_1,5TVF_1
193
3
Newick tree
[
5TVF_1:11.48,
[
1KIT_1:76,8BLF_1:76
]:41.48
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1305
}{\log_{20}
1305}-\frac{548}{\log_{20}548})=193.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1KIT_1
8BLF_1
253
211.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]