Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2BNM_1)}(2) \setminus P_{f(5KIN_1)}(2)|=66\),
\(|P_{f(5KIN_1)}(2) \setminus P_{f(2BNM_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000100111011000000101001111011100100111100101101010011011011100111101111001001111011000111011000100010001100001101111110110001001010010110011111010101011000010011110110111000110110110101010111101
Pair
\(Z_2\)
Length of longest common subsequence
2BNM_1,5KIN_1
140
4
2BNM_1,7ROO_1
172
4
5KIN_1,7ROO_1
162
4
Newick tree
[
7ROO_1:87.58,
[
2BNM_1:70,5KIN_1:70
]:17.58
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{456
}{\log_{20}
456}-\frac{198}{\log_{20}198})=75.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2BNM_1
5KIN_1
94
83
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]