Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DNL_1)}(2) \setminus P_{f(7TUO_1)}(2)|=45\),
\(|P_{f(7TUO_1)}(2) \setminus P_{f(4DNL_1)}(2)|=150\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000010101010110001010100100111101011001010101110100000000001000101010001010101000000101011010000000111010111001101110110011000010000111101
Pair
\(Z_2\)
Length of longest common subsequence
4DNL_1,7TUO_1
195
5
4DNL_1,5YXY_1
177
4
7TUO_1,5YXY_1
164
4
Newick tree
[
4DNL_1:96.52,
[
5YXY_1:82,7TUO_1:82
]:14.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{525
}{\log_{20}
525}-\frac{140}{\log_{20}140})=113.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DNL_1
7TUO_1
143
97
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]