Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ASM_1)}(2) \setminus P_{f(1BDW_1)}(2)|=214\),
\(|P_{f(1BDW_1)}(2) \setminus P_{f(2ASM_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000000111000101110111110011011110111010001111111000001100100001110100110011100100100110001000101110001011001110101000010011100101111011101110101010001111001011000111001011101110101110010001101100010011001000110010001001110100011011000010000011010110110001001001101011110011100000001100010100010100110110010111100100010111100101011111000001111101110100100111000000011101100001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{391
}{\log_{20}
391}-\frac{16}{\log_{20}16})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ASM_1
1BDW_1
156
80
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]