Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ZOB_1)}(2) \setminus P_{f(4RCZ_1)}(2)|=70\),
\(|P_{f(4RCZ_1)}(2) \setminus P_{f(1ZOB_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010001011001000110011010111100101011001010111010010101111000101101110011010011001100111011001101011110011110011000011101101101000111110010110111101000110011111111011111110001010001100011010011011000001011111101110011110110101111000001011111100100111001011100001101011010001111111111100111000100110110000100111111110110110001111010111001001110110010011010101111110110000000110111101000010111010110111111110111110100001011101110110011
Pair
\(Z_2\)
Length of longest common subsequence
1ZOB_1,4RCZ_1
149
4
1ZOB_1,7PDO_1
130
5
4RCZ_1,7PDO_1
155
4
Newick tree
[
4RCZ_1:79.34,
[
1ZOB_1:65,7PDO_1:65
]:14.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{848
}{\log_{20}
848}-\frac{415}{\log_{20}415})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ZOB_1
4RCZ_1
146
144
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]