Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IMI_1)}(2) \setminus P_{f(1CPQ_1)}(2)|=216\),
\(|P_{f(1CPQ_1)}(2) \setminus P_{f(8IMI_1)}(2)|=12\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101001001101010001110010110100001011010011111001000111101100010111001110110110111101001000001000010101101000011100111000111100100110011101001110111111011001000100101110010001111000111100111001100100101011110010011010100000001110010111001010000011011010010011111111011110001110100010010000110110001100011101001001000100101010011011100010000110111000110111001110110000010000011110111111011101000101110001111001100101010111100100011100011011010100101110001010100110101111100000110101111100100111001011000010111110000010101101000000101001010110011110101010111011000111001001001010010100101010011001100011001010010100010010001110100100000000011100111111011100100101110011100001011110100101101101101000101100101100111010011001100000000110011100011000010111011000110001000010011011000100001000011011100010000110101100010101001110100001010000011100110111011100000101110101100001011110110001100010000101111010110010110100011110111011010001110011110010110110101001100001011111101100100100110110001100011000010010001001010100110011000100001001010001101100011101100010100000111101101110011000000011100111100010110100110110000110001000010011000110
Pair
\(Z_2\)
Length of longest common subsequence
8IMI_1,1CPQ_1
228
4
8IMI_1,5NIW_1
120
5
1CPQ_1,5NIW_1
202
4
Newick tree
[
1CPQ_1:11.43,
[
8IMI_1:60,5NIW_1:60
]:59.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1265
}{\log_{20}
1265}-\frac{129}{\log_{20}129})=306.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IMI_1
1CPQ_1
366
203
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]