Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YJC_1)}(2) \setminus P_{f(5DSB_1)}(2)|=147\),
\(|P_{f(5DSB_1)}(2) \setminus P_{f(1YJC_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011011001011110001001001011110011000010101111101110000110000001001110111100011111111010101101111010100011101101111001011010111101011101110011101111111110010010000110110010111111100000010100111010111111010001110001100100110101111111110001010000100010000001100100101110101110
Pair
\(Z_2\)
Length of longest common subsequence
1YJC_1,5DSB_1
152
2
1YJC_1,8YLS_1
178
3
5DSB_1,8YLS_1
198
2
Newick tree
[
8YLS_1:99.44,
[
1YJC_1:76,5DSB_1:76
]:23.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{285
}{\log_{20}
285}-\frac{10}{\log_{20}10})=93.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YJC_1
5DSB_1
114
59
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]