Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HDN_1)}(2) \setminus P_{f(8SLB_1)}(2)|=79\),
\(|P_{f(8SLB_1)}(2) \setminus P_{f(8HDN_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101101001111101111111011110110111011100100011011111100111011110001000000011101110011010111001111110110111001011101011011010011110100111111101001110000101100100011100100011101111110101111111000111011010100111000111011010011011111001111110101101011110010
Pair
\(Z_2\)
Length of longest common subsequence
8HDN_1,8SLB_1
175
3
8HDN_1,6BHN_1
160
3
8SLB_1,6BHN_1
167
4
Newick tree
[
8SLB_1:87.28,
[
8HDN_1:80,6BHN_1:80
]:7.28
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{540
}{\log_{20}
540}-\frac{252}{\log_{20}252})=82.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HDN_1
8SLB_1
104
98.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]