Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1YGP_1)}(2) \setminus P_{f(4JGS_1)}(2)|=239\),
\(|P_{f(4JGS_1)}(2) \setminus P_{f(1YGP_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000101111001001001111100111000010010010010001100100011001000001110011010100011101000000100001001001010111101100111010100100111001010011011100111010011000101111011110111011001100111111011000011110011010010010011001011010000101110101010010110001010011110011111001111110000100101101010001010010010000011000010010111010001101001010000110110100110010000011001100111010000101111010011101001010011011000110000011001100110011101110010110010111100110011001011001011000010001011111111000101110100011000110011010110011010011010011001010110110001001000011011010010001000011001001010001011011000001101100001000110101001000000010111110001110011001101001100010010111100111001101110110011011000001001101111100010010111110010001001100101000101110111111010110101000110001111101000100100000001001100100110010010101001001011100100010001100010001100011000100000011000110110111100000100000011010110
Pair
\(Z_2\)
Length of longest common subsequence
1YGP_1,4JGS_1
249
4
1YGP_1,1LKY_1
261
3
4JGS_1,1LKY_1
116
2
Newick tree
[
1YGP_1:14.40,
[
4JGS_1:58,1LKY_1:58
]:85.40
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{984
}{\log_{20}
984}-\frac{105}{\log_{20}105})=244.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1YGP_1
4JGS_1
312
172.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]