Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1IZE_1)}(2) \setminus P_{f(8FJD_1)}(2)|=66\),
\(|P_{f(8FJD_1)}(2) \setminus P_{f(1IZE_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010100010000000100101100011101001010111100001000001000001100100101101010010100101010000101111000001100100100010000100111111100100101010001100100010011111110001111001100000000101000010000111110101001100000001011100100111100011010000101100000011011100101101010110001011100101101101001111000011110111011100001110101101111101
Pair
\(Z_2\)
Length of longest common subsequence
1IZE_1,8FJD_1
159
3
1IZE_1,2MLB_1
146
4
8FJD_1,2MLB_1
163
4
Newick tree
[
8FJD_1:82.85,
[
1IZE_1:73,2MLB_1:73
]:9.85
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{648
}{\log_{20}
648}-\frac{323}{\log_{20}323})=90.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
1IZE_1
8FJD_1
115
112.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]