Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1WZF_1)}(2) \setminus P_{f(4FWS_1)}(2)|=41\),
\(|P_{f(4FWS_1)}(2) \setminus P_{f(1WZF_1)}(2)|=113\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010111110100001010001000011001101011110100100011110011001101101011100110111001011100100101000100010101111001001001000101111110001001101011011101100001101011110010111010100000000100101000000011001001111000111011011
Pair
\(Z_2\)
Length of longest common subsequence
1WZF_1,4FWS_1
154
3
1WZF_1,6MDY_1
157
4
4FWS_1,6MDY_1
163
6
Newick tree
[
6MDY_1:80.99,
[
1WZF_1:77,4FWS_1:77
]:3.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{630
}{\log_{20}
630}-\frac{215}{\log_{20}215})=117.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1WZF_1
4FWS_1
149
112.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]