Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3TDA_1)}(2) \setminus P_{f(5NGS_1)}(2)|=146\),
\(|P_{f(5NGS_1)}(2) \setminus P_{f(3TDA_1)}(2)|=43\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000101111111111110110101000100100100011011010111011111011111001110010001001111100111111000111110011110000010100100111100010011000110101111000101101011100110011101001001000010110110110011000011100110111111011111101101001110010011000010101101100100111101001010100010000101111011011110000011111111110101000100010011101001011001011000111001001101111110010000101011011010011001001100011100110101001101010110101111101100101101110101111100110010101101010100011111110101001011100000
Pair
\(Z_2\)
Length of longest common subsequence
3TDA_1,5NGS_1
189
4
3TDA_1,8FEH_1
185
3
5NGS_1,8FEH_1
156
4
Newick tree
[
3TDA_1:98.13,
[
8FEH_1:78,5NGS_1:78
]:20.13
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{638
}{\log_{20}
638}-\frac{159}{\log_{20}159})=137.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3TDA_1
5NGS_1
174
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]