Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1WWR_1)}(2) \setminus P_{f(9JOF_1)}(2)|=39\),
\(|P_{f(9JOF_1)}(2) \setminus P_{f(1WWR_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001100011011100100110010111111110010110010001001001010101111001000100001010010101010110001111001001110110000111101101100101000101000110010011001100100011
Pair
\(Z_2\)
Length of longest common subsequence
1WWR_1,9JOF_1
166
21
1WWR_1,7MXI_1
168
6
9JOF_1,7MXI_1
178
6
Newick tree
[
7MXI_1:87.68,
[
1WWR_1:83,9JOF_1:83
]:4.68
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{594
}{\log_{20}
594}-\frac{171}{\log_{20}171})=121.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1WWR_1
9JOF_1
147
101
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]