Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JVE_1)}(2) \setminus P_{f(4QHJ_1)}(2)|=92\),
\(|P_{f(4QHJ_1)}(2) \setminus P_{f(8JVE_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001001000101110011111001000001001010111110010001110101111000110110101101100101001101010110111011101010110110010111001010011110100010000111100100100001000
Pair
\(Z_2\)
Length of longest common subsequence
8JVE_1,4QHJ_1
129
3
8JVE_1,6YMI_1
137
2
4QHJ_1,6YMI_1
86
1
Newick tree
[
8JVE_1:72.70,
[
4QHJ_1:43,6YMI_1:43
]:29.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{266
}{\log_{20}
266}-\frac{110}{\log_{20}110})=49.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JVE_1
4QHJ_1
62
51.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]