Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1VQQ_1)}(2) \setminus P_{f(3ZKM_1)}(2)|=90\),
\(|P_{f(3ZKM_1)}(2) \setminus P_{f(1VQQ_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000100010110000100100000010000010101000110100011100101000010010000001010001000010100010101100011101010001111110000010100100001011000010110010100111110010000001110010100001000100011000011110010010001001100101000000000011001000111011110000100000010000111100110010000100001001011000000110011000000100101010101000100010000101011010010111110010001011101100000001000000111001010001100001101111100001000000010101100000111001000011010101001100000111101110110001001100111100110001100101000010001111001010101110110110100110001010110110000001100011000010110011001100000001000010111001010101001001001111100000010111110100100011100010101010001000100000100
Pair
\(Z_2\)
Length of longest common subsequence
1VQQ_1,3ZKM_1
154
4
1VQQ_1,6IVO_1
186
4
3ZKM_1,6IVO_1
180
4
Newick tree
[
6IVO_1:95.86,
[
1VQQ_1:77,3ZKM_1:77
]:18.86
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1032
}{\log_{20}
1032}-\frac{386}{\log_{20}386})=170.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1VQQ_1
3ZKM_1
215
171.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]