Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1QIC_1)}(2) \setminus P_{f(1YEU_1)}(2)|=82\),
\(|P_{f(1YEU_1)}(2) \setminus P_{f(1QIC_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010000100011000101100110011001101100101101001001010111011100010101101110111010111111010101000001000001001111110011001111001000111011000100100101000010110010111
Pair
\(Z_2\)
Length of longest common subsequence
1QIC_1,1YEU_1
140
3
1QIC_1,7WEX_1
151
3
1YEU_1,7WEX_1
155
4
Newick tree
[
7WEX_1:78.55,
[
1QIC_1:70,1YEU_1:70
]:8.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{302
}{\log_{20}
302}-\frac{141}{\log_{20}141})=49.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
1QIC_1
1YEU_1
62
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]