Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PHB_1)}(2) \setminus P_{f(2ENN_1)}(2)|=177\),
\(|P_{f(2ENN_1)}(2) \setminus P_{f(3PHB_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000000011101011001100100000001011001000000000101110000001011110101111100010010110000110110001110110111111010101110101010010111010111011011110011100111110101011011110001011110100110110000110011110010000100011001001100001001001111110100110001100111011110011011110001101111011000111000010010000111110011001001101111011110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{401
}{\log_{20}
401}-\frac{77}{\log_{20}77})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PHB_1
2ENN_1
132
79
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]