Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1NQT_1)}(2) \setminus P_{f(3DZA_1)}(2)|=157\),
\(|P_{f(3DZA_1)}(2) \setminus P_{f(1NQT_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101101101110011011000110010000000000001011101101000110101110000101011010010000000100111000001010010111011000011101111110111010100000001001000101011001111111011110100100010111000100110001010101010110011101010101011101100110010010111101111000111011101110010010011100111100010110101101001001010010111110101001011010001111110000100001101010111011011001010011100011111010101111010010110010010010101000000000111010001000110011011111010100010110000110011100100010011001100011101001101011001101000111010
Pair
\(Z_2\)
Length of longest common subsequence
1NQT_1,3DZA_1
180
3
1NQT_1,4MBO_1
178
4
3DZA_1,4MBO_1
148
4
Newick tree
[
1NQT_1:94.10,
[
4MBO_1:74,3DZA_1:74
]:20.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{687
}{\log_{20}
687}-\frac{191}{\log_{20}191})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1NQT_1
3DZA_1
180
121
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]