Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1LYH_1)}(2) \setminus P_{f(6JRD_1)}(2)|=46\),
\(|P_{f(6JRD_1)}(2) \setminus P_{f(1LYH_1)}(2)|=114\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110110100110101000001000111101100010101100010011100001111000100110001011101110010101100010110011110111011001111100010110000100111011000100001001001100100101010001
Pair
\(Z_2\)
Length of longest common subsequence
1LYH_1,6JRD_1
160
3
1LYH_1,6INW_1
188
3
6JRD_1,6INW_1
182
4
Newick tree
[
6INW_1:96.32,
[
1LYH_1:80,6JRD_1:80
]:16.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{448
}{\log_{20}
448}-\frac{164}{\log_{20}164})=83.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
1LYH_1
6JRD_1
106
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]