Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6FUV_1)}(2) \setminus P_{f(6TOF_1)}(2)|=152\),
\(|P_{f(6TOF_1)}(2) \setminus P_{f(6FUV_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001110010101100100101010110100011110011001010100101101010101000000100110010100001011111110000100011001000010001011000100100011100100011100101100111001100100101110110000011110001100111111000111010101011001110000111000011000101100010011101000000000010000101001011011111111101001100100100111110101000101110001110000000000111111011000010000011111100000010000010010111011100100011101000001110010100100111011000001001110100011011000
Pair
\(Z_2\)
Length of longest common subsequence
6FUV_1,6TOF_1
198
3
6FUV_1,6TKU_1
164
3
6TOF_1,6TKU_1
212
5
Newick tree
[
6TOF_1:10.55,
[
6FUV_1:82,6TKU_1:82
]:26.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{555
}{\log_{20}
555}-\frac{128}{\log_{20}128})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6FUV_1
6TOF_1
159
104
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]