Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ICF_1)}(2) \setminus P_{f(1GNL_1)}(2)|=33\),
\(|P_{f(1GNL_1)}(2) \setminus P_{f(1ICF_1)}(2)|=152\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100101000101011000100100111010111010110001011010000110001101001001111001100100011100000010010000000010001100011101100001110111011110111011000111000110101000000100111111011000
Pair
\(Z_2\)
Length of longest common subsequence
1ICF_1,1GNL_1
185
3
1ICF_1,4WAM_1
181
3
1GNL_1,4WAM_1
170
5
Newick tree
[
1ICF_1:93.57,
[
4WAM_1:85,1GNL_1:85
]:8.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{719
}{\log_{20}
719}-\frac{175}{\log_{20}175})=153.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ICF_1
1GNL_1
193
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]