Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OUP_1)}(2) \setminus P_{f(3AZH_1)}(2)|=191\),
\(|P_{f(3AZH_1)}(2) \setminus P_{f(7OUP_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000011100111001000011011010001010010011101111111000101101011100110100100100011101100000011110111100011000011000111011000100111100110001001011100010111010101001111001100010100010010110011000010100001100101010100010110111001010001000100001010110100100111100110010010101100001011100100100101010001001110001111000111100000111001010111111001101010011101001100111110100001101010010110111011111101100001000011001011011111010000010110000001011101101010111011110101011100001110100001101001001001000100100010011000000010011101010101101111011010011010110110111111010010110100101010111101110110111010100100101010101000010011011100110010110001011110110010101001110011010001110000001110100010100101100010111110010001100110100110011010101101100110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{876
}{\log_{20}
876}-\frac{139}{\log_{20}139})=205.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OUP_1
3AZH_1
261
153.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]