Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1GYC_1)}(2) \setminus P_{f(6USW_1)}(2)|=105\),
\(|P_{f(6USW_1)}(2) \setminus P_{f(1GYC_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111110111101110101110011110111101110100100101011001000011000010101110110011011111000111010011001011001101100001000000110111110010010100001000001101001000110111011111010110111001001011111101001000010110100010001010100101101011000111100101111000011101000110011010101101111111001110001111101000000011111000101110111110101111001101110101001110010101101111101101100100111110101111000101011101111111011010101111100110000000011100110010111100101010000111111000101010111111110011010110111011001011001100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{854
}{\log_{20}
854}-\frac{355}{\log_{20}355})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1GYC_1
6USW_1
170
144.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]