CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
4GUO_1 4QKL_1 6VRV_1 Letter Amino acid
12 0 22 E Glutamic acid
12 5 18 I Isoleucine
10 6 31 L Leucine
14 0 7 T Threonine
7 0 5 C Cysteine
10 0 11 Q Glutamine
13 3 19 S Serine
10 2 9 A Alanine
14 1 20 G Glycine
14 1 11 H Histidine
9 0 7 K Lycine
18 1 15 P Proline
8 0 7 Y Tyrosine
14 1 21 R Arginine
8 0 6 N Asparagine
9 2 19 D Aspartic acid
5 0 3 M Methionine
7 0 14 F Phenylalanine
1 1 7 W Tryptophan
15 2 22 V Valine

4GUO_1|Chains A, B, C, D, E[auth I], F[auth J], G[auth K], H[auth L]|Tumor protein p73|Homo sapiens (9606)
>4QKL_1|Chain A|influenza M2 monomer, TM domain (22-46)|Influenza A virus (385599)
>6VRV_1|Chain A|Serine/threonine-protein kinase pim-1|Homo sapiens (9606)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
4GUO , Knot 99 210 0.84 40 156 200
MGHHHHHHHHEFIPSNTDYPGPHHFEVTFQQSSTAKSATWTYSPLLKKLYCQIAKTCPIQIKVSTPPPPGTAIRAMPVYKKAEHVTDVVKRCPNHELGRDFNEGQSAPASHLIRVEGNNLSQYVDDPVTGRQSVVVPYEPPQVGTEFTTILYNFMCNSSCVGGMNRRPILIIITLEMRDGQVLGRRSFEGRICACPGRDRKADEDHYREQ
4QKL , Knot 17 27 0.69 24 24 25
XSSDPLVVAASIIGILHLILWILDRLX
6VRV , Knot 121 274 0.82 40 176 257
PLESQYQVGPLLGSGGFGSVYSGIRVSDNLPVAIKHVEKDRISDWGELPNGTRVPMEVVLLKKVSSGFSGVIRLLDWFERPDSFVLILERPEPVQDLFDFITERGALQEELARSFFWQVLEAVRHCHNCGVLHRDIKDENILIDLNRGELKLIDFGSGALLKDTVYTDFDGTRVYSPPEWIRYHRYHGRSAAVWSLGILLYDMVCGDIPFEHDEEIIRGQVFFRQRVSSECQHLIRWCLALRPSDRPTFEEIQNHPWMQDVLLPQETAEIHLHS

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(4GUO_1)}(2) \setminus P_{f(4QKL_1)}(2)|=146\), \(|P_{f(4QKL_1)}(2) \setminus P_{f(4GUO_1)}(2)|=14\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000001110000011100101010000010010100011100100011000110101001111101101111000100100110001000110010010011100110101001000100110100011110011011001001100110000011110001111110101001011100010101010110000100000000
Pair \(Z_2\) Length of longest common subsequence
4GUO_1,4QKL_1 160 3
4GUO_1,6VRV_1 188 4
4QKL_1,6VRV_1 168 3

Newick tree

 
[
	6VRV_1:91.98,
	[
		4GUO_1:80,4QKL_1:80
	]:11.98
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{237 }{\log_{20} 237}-\frac{27}{\log_{20}27})=71.6\)
Status Protein1 Protein2 d d1/2
Query variables 4GUO_1 4QKL_1 92 51.5
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]