Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1EYV_1)}(2) \setminus P_{f(2EEF_1)}(2)|=66\),
\(|P_{f(2EEF_1)}(2) \setminus P_{f(1EYV_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001101000100011111101010110110110001111010101101010011110110001101001101010110100111100111010110110110110111100110110010000011110111101111010101110110111
Pair
\(Z_2\)
Length of longest common subsequence
1EYV_1,2EEF_1
151
3
1EYV_1,2MTM_1
110
2
2EEF_1,2MTM_1
131
2
Newick tree
[
2EEF_1:75.17,
[
1EYV_1:55,2MTM_1:55
]:20.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{312
}{\log_{20}
312}-\frac{156}{\log_{20}156})=47.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1EYV_1
2EEF_1
61
61
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]