Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FZN_1)}(2) \setminus P_{f(2JQV_1)}(2)|=115\),
\(|P_{f(2JQV_1)}(2) \setminus P_{f(4FZN_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101110010101010111010001001001001101100111011110101000100110100010000111000111001111000010100100100011001100001000110011100110111101101110111111111011100111010101110110110010111000101011001100001011011010101110100010111010101011011001010000111100100110111100001011101110101010000000
Pair
\(Z_2\)
Length of longest common subsequence
4FZN_1,2JQV_1
182
4
4FZN_1,8BYX_1
174
2
2JQV_1,8BYX_1
130
2
Newick tree
[
4FZN_1:95.69,
[
8BYX_1:65,2JQV_1:65
]:30.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{448
}{\log_{20}
448}-\frac{165}{\log_{20}165})=83.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FZN_1
2JQV_1
111
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]