Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1DYK_1)}(2) \setminus P_{f(7RXD_1)}(2)|=71\),
\(|P_{f(7RXD_1)}(2) \setminus P_{f(1DYK_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111011011111111011011011000111101000111000001111100001000101010100010011110110100101101010011101000110100001110010010100101101000111010010000101001011011111011111100000011110001010100101001110100100010110011010010010101110111110111011101010000101111110000101111011000111010011101011001011101001010010100100010111010010100100100010000111111111110011100010101010010100101011010110110101101100100
Pair
\(Z_2\)
Length of longest common subsequence
1DYK_1,7RXD_1
156
4
1DYK_1,7OYP_1
156
4
7RXD_1,7OYP_1
152
5
Newick tree
[
1DYK_1:78.65,
[
7RXD_1:76,7OYP_1:76
]:2.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{939
}{\log_{20}
939}-\frac{394}{\log_{20}394})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1DYK_1
7RXD_1
176
153.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]