Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4XKY_1)}(2) \setminus P_{f(4WPU_1)}(2)|=46\),
\(|P_{f(4WPU_1)}(2) \setminus P_{f(4XKY_1)}(2)|=136\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101110111111101110001101011001100111111011111100100001000101011000001101011111010000110010110111001101110111001101010110100011101111111001100001011110100110011111100001001010011011000101011111001110011111011101110111010101001100101001001000110101010011001000101100110111100001111100100000101101100111
Pair
\(Z_2\)
Length of longest common subsequence
4XKY_1,4WPU_1
182
4
4XKY_1,5QXS_1
187
3
4WPU_1,5QXS_1
221
3
Newick tree
[
5QXS_1:10.86,
[
4XKY_1:91,4WPU_1:91
]:14.86
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{922
}{\log_{20}
922}-\frac{300}{\log_{20}300})=167.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4XKY_1
4WPU_1
215
157.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]