Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1BZA_1)}(2) \setminus P_{f(5AFY_1)}(2)|=81\),
\(|P_{f(5AFY_1)}(2) \setminus P_{f(1BZA_1)}(2)|=99\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001000101100001101111110010000110010001110000011111111000000001100010100001100011100010101011011111100000011001110111100101110011000101000110100111101000001111100100101101110000101101101000101010111100111100010100100001111110001111110010010001000001111110110011
Pair
\(Z_2\)
Length of longest common subsequence
1BZA_1,5AFY_1
180
3
1BZA_1,4OJD_1
188
4
5AFY_1,4OJD_1
192
4
Newick tree
[
4OJD_1:96.61,
[
1BZA_1:90,5AFY_1:90
]:6.61
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{520
}{\log_{20}
520}-\frac{258}{\log_{20}258})=74.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1BZA_1
5AFY_1
97
95.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]