Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5GKD_1)}(2) \setminus P_{f(1NVF_1)}(2)|=92\),
\(|P_{f(1NVF_1)}(2) \setminus P_{f(5GKD_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101110010100011001011001111010100101110101000011010100110111010001011100111011110010010101111000001110000100111001001001000011110100001000011100001101110100000000000100001110111100110010110000010001011000010000101011000010001000111000101010010101100011110110001110110000110000101101001101101101110001000001001110000110100101111000000111100010001110001001101100101101000110001010100110010101000001110101000000110001011100011101010101011110100111011000110111010010111101100110011010001010100010111110000110100010101011010100110111001100001110000011100001001010000011011000110010100001001010110100000011100100101000010010111101001100000111011100011001101000001101110100100100001000111110101101001101011010101110011110110001010011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1119
}{\log_{20}
1119}-\frac{393}{\log_{20}393})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5GKD_1
1NVF_1
239
183.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]