Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9MOT_1)}(2) \setminus P_{f(3GRS_1)}(2)|=96\),
\(|P_{f(3GRS_1)}(2) \setminus P_{f(9MOT_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010111011010001010000101010010011000001010000100010111110101011011010100010011010101100001001100100011100100111110000001010000110000110100100000011001001111111100010100110000100011111111000001000001100101010101101010100010101111001101101010101100000010110110100001010111010111001010010111010101000100000100100000001001001111001110011111101000000001001000110000011000000001000010101000111111101010001011100110010010101101010000100010010000110110110000001011010010000100100100001011001101111111100000100011001101000111111000001010001001000100100001010000110010101100100111010001010100110000110101010011010000001011110100101010011011100100010000101010010011000000001101100011100010001010000001000000011111110
Pair
\(Z_2\)
Length of longest common subsequence
9MOT_1,3GRS_1
136
4
9MOT_1,5DDZ_1
185
4
3GRS_1,5DDZ_1
177
3
Newick tree
[
5DDZ_1:96.87,
[
9MOT_1:68,3GRS_1:68
]:28.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1187
}{\log_{20}
1187}-\frac{478}{\log_{20}478})=183.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9MOT_1
3GRS_1
234
196
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]