Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9MCZ_1)}(2) \setminus P_{f(8WPN_1)}(2)|=22\),
\(|P_{f(8WPN_1)}(2) \setminus P_{f(9MCZ_1)}(2)|=160\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111010001001100010011000010110111101001011111001100011001101101101101101100101010001001100110101000010101010111000001100010111010010010001111101001111001111001001001001010110110101101101001100010111101000111101001101001001001110100111010111101101110010100110100100001101111111001011111010010101000111011110011110101111010011001
Pair
\(Z_2\)
Length of longest common subsequence
9MCZ_1,8WPN_1
182
4
9MCZ_1,2GUC_1
164
4
8WPN_1,2GUC_1
258
3
Newick tree
[
8WPN_1:11.88,
[
9MCZ_1:82,2GUC_1:82
]:37.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1245
}{\log_{20}
1245}-\frac{330}{\log_{20}330})=239.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9MCZ_1
8WPN_1
309
208
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]