Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9LSL_1)}(2) \setminus P_{f(4WOR_1)}(2)|=141\),
\(|P_{f(4WOR_1)}(2) \setminus P_{f(9LSL_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000100111111101001010010100101001001100101100101100101000110011101000000011000100110010011111011010001001011111111100010001100001000001110100001100001000111100110011011010000001011001111001110100010110110000101001000011111110100101100111100011011100110010000001010100110000000110101111011010100110010000111101000000010111000
Pair
\(Z_2\)
Length of longest common subsequence
9LSL_1,4WOR_1
190
3
9LSL_1,4LVZ_1
210
2
4WOR_1,4LVZ_1
126
1
Newick tree
[
9LSL_1:10.74,
[
4WOR_1:63,4LVZ_1:63
]:46.74
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{475
}{\log_{20}
475}-\frac{149}{\log_{20}149})=96.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
9LSL_1
4WOR_1
127
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]