9LFL_1|Chain A|Tumor necrosis factor receptor superfamily member 1B|Homo sapiens (9606)
>8RLT_1|Chains A, F|HLA class I histocompatibility antigen, alpha chain E|Homo sapiens (9606)
>4NYO_1|Chains A, B, C, D, E, F|Divalent-cation tolerance protein CutA|Pyrococcus horikoshii (70601)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9LFL_1)}(2) \setminus P_{f(8RLT_1)}(2)|=64\),
\(|P_{f(8RLT_1)}(2) \setminus P_{f(9LFL_1)}(2)|=136\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011011000010000000101000000110010110000000100000000000110111001001000000010001000000010000111001100001001011100001111110110000011001011101000000001001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{428
}{\log_{20}
428}-\frac{152}{\log_{20}152})=82.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
9LFL_1
8RLT_1
105
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]