Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9KSO_1)}(2) \setminus P_{f(8VNJ_1)}(2)|=236\),
\(|P_{f(8VNJ_1)}(2) \setminus P_{f(9KSO_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010111111111101110101000110010010110100000010010101011010110110101111110000011101111110110000001011100101011110111111010001110011011101101000001101101001001011011010100101000010011000010110111101000001010011110100010110100100011011110111110000011000110111110010110011100101000010011111010111111110111110010011101100010001110011100011100101101100011101001110000111110101001101011100101110100100011100001001101110000011001000000100111000100001001000100110
Pair
\(Z_2\)
Length of longest common subsequence
9KSO_1,8VNJ_1
241
3
9KSO_1,7KAE_1
221
4
8VNJ_1,7KAE_1
58
2
Newick tree
[
9KSO_1:13.43,
[
7KAE_1:29,8VNJ_1:29
]:10.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{475
}{\log_{20}
475}-\frac{21}{\log_{20}21})=142.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9KSO_1
8VNJ_1
184
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]