Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9KRI_1)}(2) \setminus P_{f(1QFT_1)}(2)|=168\),
\(|P_{f(1QFT_1)}(2) \setminus P_{f(9KRI_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000100110010100001111111101111010111111011101111100010001011100111111110110110100001111111101111111111111101011011011010110101110111010111110000001111111100110010001111001001001001011000001010110100001100001110110001101011101111101010101110111101011011000101101010110111111110111111110111001010100110101110110011100111111101110000100000001111111001001111111101111111001101001100111111110101101111111111111111111110001111011101110111100010100010111001101110101100111011011000010100111011100111111011001100110111001011101010110111011111101100011100000101111011111111001101110111011010101100100100111110010001001010110010110000011110011
Pair
\(Z_2\)
Length of longest common subsequence
9KRI_1,1QFT_1
192
3
9KRI_1,5LDZ_1
170
4
1QFT_1,5LDZ_1
156
4
Newick tree
[
9KRI_1:94.51,
[
5LDZ_1:78,1QFT_1:78
]:16.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{810
}{\log_{20}
810}-\frac{175}{\log_{20}175})=177.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9KRI_1
1QFT_1
221
140.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]