9KMJ_1|Chain A|Sodium- and chloride-dependent taurine transporter|Homo sapiens (9606)
>9NDI_1|Chain A|DNA (5'-D(P*AP*CP*GP*GP*AP*CP*AP*GP*CP*GP*TP*CP*A)-3')|synthetic construct (32630)
>2CWB_1|Chain A|Immunoglobulin G-binding protein G,Ubiquitin-like protein 7|Streptococcus sp. group G (1320)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9KMJ_1)}(2) \setminus P_{f(9NDI_1)}(2)|=270\),
\(|P_{f(9NDI_1)}(2) \setminus P_{f(9KMJ_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000010010010001101011001100100010101100001000101110111111111011011010000111111110111111011111110111100000111001001011101110101111011010011111110001100100011110000010010010001000001110100001001110110001101011100110101011101111111011011011000101101010111111111110110111111110101010100100101110110011100110111100110000000000000111101001001101111101111110001101101100111111110101101111101101111111111110001101010100110101011001000011111100100111101100111011011000110110111111100111111011001000100111001111100011110111011011101100111000000101011111110111001101111111010000111110100110100100111000110100000110111101001110011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{633
}{\log_{20}
633}-\frac{13}{\log_{20}13})=189.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9KMJ_1
9NDI_1
240
122.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]