Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9JJF_1)}(2) \setminus P_{f(7LMJ_1)}(2)|=180\),
\(|P_{f(7LMJ_1)}(2) \setminus P_{f(9JJF_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001011001100001010011000100000011100100000101110000100000101000000011001010001011000000100101010101011000110101000001011101110010101101110101110011101010011001110110001111101100011100110110000111100001011111011110000011000010011100101011001111010000111100100100110111000100111010000000110111111111101110011010011000111111010101101111100001000101001011010000010101101111011000001100110000110100101010001011110111010000111010111110010110001100000100001011110111000101101110011010011010110010101110001011100011000100101011101100111011000000010011011001011110000000011101001011101010111111100000110111011001111111100110011001000001001000100010110001111100010000010001110010000010110111010000111000001110011110111000110111010111111111011100000001100000001000000100000000111111000000011000001011000000010100011010000010111000011100011010011100111011101111110101111011010110011110100111011110111001001110110010001010100010110110101111111101100001101001110101111110010110100111101111001100110111111110110111101111101110100001101001100101010101110010100100110101010110111111011100111101111110001001000000110100001100000011111111111011111011101000101101001011101101001001010110101000000001010001011100100100010011001010010110010110110000101101010100000010011111000111010111110101100010001011001001110001101011110001100011111101111000111101010110001000001001000100110011110111001101011110111001101110010000111110110011011110000000111111110110110011010110011101010000000110010011001001001010010000011100111010000101110101011001111010010101110100101100110100111000101110
Pair
\(Z_2\)
Length of longest common subsequence
9JJF_1,7LMJ_1
196
5
9JJF_1,1KBO_1
194
4
7LMJ_1,1KBO_1
180
4
Newick tree
[
9JJF_1:99.87,
[
1KBO_1:90,7LMJ_1:90
]:9.87
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1866
}{\log_{20}
1866}-\frac{306}{\log_{20}306})=395.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9JJF_1
7LMJ_1
508
302
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]